Large Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Prepared via Citrate Route
نویسندگان
چکیده
The 1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O₃ (BCZT-Li) ceramics prepared by the citrate method exhibit improved phase purity, densification and electrical properties, which provide prospective possibility to develop high-performance electrocaloric materials. The electrocaloric effect was evaluated by phenomenological method, and the BCZT-Li ceramics present large electrocaloric temperature change ∆T, especially large electrocaloric responsibility ξ = ∆Tmax/∆Emax, which can be comparable to the largest values reported in the lead-free piezoelectric ceramics. The excellent electrocaloric effect is considered as correlating with the coexistence of polymorphic ferroelectric phases, which are detected by the Raman spectroscopy. The large ξ value accompanied by decreased Curie temperature (around 73 °C) of the BCZT-Li ceramics prepared by the citrate method presents potential applications as the next-generation solid-state cooling devices.
منابع مشابه
Studying the effects of adding CeO2 and CuO on electrical properties of lead free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoceramics
Lead-free (Ba0.85Ca0.15)[(Zr0.1Ti0.9)]O3 (BCZT) piezoceramics were synthesized using solid-state ceramic processing. In order to improve the electrical properties CeO2 and CuO additives/dopants were used and two methods were employed to introduce theses oxides; one, in which 0.1 mol.% CeO2 was mixed with the raw materials and the composition was balanced for A-site substitution (BCCe0.1ZT) and ...
متن کاملLarge Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics
Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we repo...
متن کاملBoth High Reliability and Giant Electrocaloric Strength in BaTiO3 Ceramics
BaTiO₃ has a giant electrocaloric strength, |ΔT|/|ΔE|, because of a large latent heat and a sharp phase transition. The electrocaloric strength of a new single crystal, as giant as 0.48 K·cm/kV, is twice larger than the previous best result, but it remarkably decreased to 0.18 K·cm/kV after several times of thermal cycles accompanied by alternating electric fields, because the field-induced pha...
متن کاملTuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics
The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ...
متن کاملImpact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O-3 ceramics
The phase transition sequence in PbZrO3-based ceramics can be readily altered by chemical modification. In Pb0.99Nb0.02[(Zr0.57Sn0.43)(0.92)Ti-0.08](0.98)O-3 (PNZST 43/8/2), the sequence is ferroelectricantiferroelectric-paraelectric during heating, while in Pb0.99Nb0.02 (Zr0.85Sn0.13Ti0.02)(0.98)O-3 (PNZST 13/2/2), it is antiferroelectric-ferroelectric-paraelectric during heating. The electroc...
متن کامل